
Experience Report: Functional
Programming of mHealth Applications

Christian L Petersen Matthias Görges Dustin Dunsmuir J Mark Ansermino Guy A Dumont
University of British Columbia, Vancouver, BC, Canada

{cpetersen mgorges ddunsmuir}@cw.bc.ca anserminos@yahoo.ca guyd@ece.ubc.ca

Abstract
A modular framework for the development of medical applications
that promotes deterministic, robust and correct code is presented.
The system is based on the portable Gambit Scheme program-
ming language and provides a flexible cross-platform environment
for developing graphical applications on mobile devices as well
as medical instrumentation interfaces running on embedded plat-
forms. Real world applications of this framework for mobile diag-
nostics, telemonitoring and automated drug infusions are reported.

The source code for the core framework is open source and
available at: https://github.com/part-cw/lambdanative.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.2.3 [General]:
Coding Tools and Techniques; D.3.2 [Programming Languages]:
Language Classifications - Applicative (Functional) Languages

Keywords functional programming, Scheme, application pro-
gramming, medical systems, cross-platform development

1. Introduction
The Pediatric Anesthesia Research Team (PART) at the University
of British Columbia is a multidisciplinary research team conduct-
ing clinical research to improve the safety and outcomes of chil-
dren both in the hospital and at home. In recent years the team has
increased its focus on technology innovation, and is currently de-
veloping a range of new diagnostic and monitoring solutions for
low cost mobile and embedded applications. As this technology
is developed in-house with very limited resources, a new software
development framework promoting robust efficient code, exten-
sive testing and debugging facilities, fast development and flexible
cross-platform deployment was required.

The team has four code developers on staff; one programmer,
two physicists and one engineer, with diverse coding backgrounds.
The typical application development process involves a much larger
diverse group of clinicians, nurses, community healthcare workers,
engineers, graphic designers and research assistants.

Traditionally, biomedical research teams write graphical soft-
ware applications in Matlab, Visual Basic and LabView. These
prototyping languages are not a good fit for robust performance-
oriented platform-independent coding. On the other hand, perfor-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICFP’13 September 25–27 2013, Boston, MA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2326-0/13/09. . . $15.00
http://dx.doi.org/10.1145/2500365.2500615

mance-critical applications are traditionally written in C, the ubiq-
uitous system language that is available on virtually all platforms.
C is however a very low level language and vulnerable to common
null pointer dereferences.

We first discovered Scheme as an extension language to C, and
the ability to automatically generate C applications from Scheme
was a natural next step. Functional languages, such as Scheme, of-
fer an attractive alternative to conventional languages, especially
when combined with a C compilation backend. In this paper we
describe a Scheme based software development solution using the
Gambit-C Scheme to C compiler [1, 2]. Scheme is a mature lan-
guage originally developed at MIT over the period 1975-1980, and
is standardized on the official IEEE standard 1178-1990 [3] and
the Revised Reports on the Algorithmic Language Scheme [4]. It
features an exceptionally simple homoiconic syntax based on s-
expressions.

The primary goal in the design of the framework was to strike
a balance between productivity, correct programming and perfor-
mance. The brevity and simplicity of Scheme code promotes pro-
ductivity and correctness, which is essential for mission critical
medical applications. At the same time, the C backend allows com-
pilation of high-performance binaries. Many diagnostic medical
devices require low-level access to relatively high bandwidth sen-
sors, and tight integration between Scheme and C is essential to
facilitate this in real time.

The framework currently contains many distinct applications
ranging from medical device servers running on embedded sys-
tems, over graphical interfaces running on medical flat panel PCs,
to mobile applications for iPhone and Android. In this paper we
examine three examples of these applications and discuss their im-
plementation.

2. Concept
The application model adopted herein relies on the fact that modern
operating systems share many core features. For example, iOS re-
quires applications to be developed in Objective C. However, much
of the underlying core operating system (Darwin) is written in C,
and can readily be addressed though the standard UNIX and POSIX
application programming interfaces. The same holds true for the
Android operating system, which requires applications to be de-
veloped in Java, while the underlying operating system (Linux)
is C based. Another common denominator between most modern
computing platforms is the presence of an accelerated OpenGL or
OpenGL ES graphics engine [5]. This provides an efficient univer-
sal mechanism for graphical user interfaces to function regardless
of the underlying operating system.

It is thus possible to construct a cross-platform program that,
while meeting the minimum requirements of the host operating
system, performs the bulk of its operations through a universal C

Figure 1. (A) Schematic of the portable application concept. (B) Application structure. (C) Compilation flow diagram.

application interface. This is illustrated in Fig 1(A). The application
consists of a payload written in Scheme which is compiled to a
native binary using the Gambit Scheme-to-C compiler and the C
(cross-)compiler available for the target platform. A small stub
shared between all applications in the framework manages the
operating system specific application requirements, launches the
program, and relays events to the payload.

The advantage of this approach is that a single code base can be
deployed unchanged to a wide range of platforms, and run with a
high level of performance suitable for IO and computationally in-
tensive applications. Support for a new platform is simply a matter
of writing another stub to launch the application on the platform
and tie into its operating system event system. The framework has
successfully been used to build applications for iOS, Android, Mac
OS X, Linux, Windows, OpenBSD, and NetBSD.

The disadvantage of the approach is that a Native Development
Kit with a C cross-compiler is required to build the payload. While
all modern operating systems have this compiler available, some
vendors may choose to withhold access to the compiler. In addition,
user interface elements integrated into to the host operating system
are not readily available to the payload. To overcome the interface
limitations we have developed a widget based graphics engine
entirely in Scheme, which provides a flexible platform-independent
front end to the host OpenGL or OpenGL ES Graphics Processing
Unit (GPU).

3. Structure
The applications are structured in a modular fashion to maximize
code reuse between applications. This is illustrated in Fig 1 (B).
Each application consists of a main routine that references modules
in a common code repository shared by all applications in the
framework. The four main modules shared by most applications
are eventloop, glcore, glgui and store.

The eventloop module is responsible for feeding user and
operating system events such as touch screen presses and redraw
triggers to the payload application. It also relays sensor information
such as battery level and device orientation to the application.

The graphics engine consists of a minimal Scheme wrapper
around the OpenGL and OpenGL ES functions in glcore and a
Scheme based graphical user interface in glgui. glgui imple-
ments a full widget system with buttons, labels, boxes, scrollable
lists, keypads, images, containers, modal dialogs etc. and is eas-
ily expandable with more widget types. Each widget type consists
of a hash table holding widget properties, a procedure for drawing
the current representation of the widget and a procedure for han-
dling input events. Widgets are associated with gui hash tables, and
multiple gui tables can be displayed on screen at the same time.
This allows simple grouping of widgets to support different screen
configurations. The system also supports rotation and scaling to
accommodate different screen geometries, resolutions and device
orientation events.

store is a generic data store implemented as a hash table
with support for data timeouts and categories. Data stores are used
throughout the applications as a convenient way to organize data.
For example in the telemonitoring application described below, pa-
tient data is grouped in individual data stores based on the network
address of the patient monitors from which the data originates.

The framework also includes support for a plugin structure built
around the scheduler module. The scheduler drives the sequential
execution of plugins based on their type (four types are supported;
input, algorithm, decision support and output). Plugins are instan-
tiated against a data store, and multiple instances are allowed. For
example, this allows multiple syringe pump drivers and infusion
controllers to be instantiated for different drugs. This functionality
is used in the closed-loop anesthesia controller described later.

The stub (in Fig. 1 (A) and (C)) which ties the Scheme payload
into the operating system is a small piece of code in the native lan-
guage of each platform, and is responsible for opening an OpenGL
window and relaying rendering and user events to the payload event
loop. The rendering itself is accomplished through direct calls to
OpenGL in glcore.

4. Development and debugging
The framework is designed to be independent of an Integrated De-
velopment Environment (IDE), allowing developers to choose their

Figure 2. (A) Elements of the phone oximeter. (B) Screen shot showing a PIERS phone oximeter measurement in progress.

most productive environment. Developers are currently working
with diverse software development environments ranging from the
Eclipse IDE to the Vi editor on both Mac OS X and Linux.

The application framework incorporates a simple file based log-
ging system that can be used for fault finding. Exceptions triggered
in the Scheme payload will result in a message about the fault writ-
ten to the log. Applications built in debug mode include source code
file and line number information, allowing easy identification of the
problem code. Faults on the C side can similarly be tracked down
by compiling in debug mode and using a platform specific stack
analysis tool like ndk-stack for Android.

A simple unit test system is used to test integrity of algorithmic
components such as the encryption and compression communica-
tion routines, and a lint-like static analyzer [6] is available to find
structural problems within the code, such as shadowed declarations
and use of reserved keywords.

The built-in Scheme interpreter and equivalence of data and
code provide unique ways to investigate and debug the state of the
live running system. For example, a console application can be used
to test a new code module interactively, prior to deployment in the
final applications.

Profiling is accomplished by using Gambit-C’s internal ability
to capture thread continuations and provide information about file
names and line numbers to build statistical information about bottle
necks in the source code.

An automated smoke test script is used to periodically build and
run all applications in the framework and verify that the binaries
are runnable. This catches compatibility problems when making
changes to the common code base of the framework.

For application verification we have developed systematic test
suites. For example, an automated test including 100 simulated
patients is used to verify the integrity of the the drug delivery
controller described later. These tests run in real-time, using the
built-in interpreter to script the inputs to the applications.

The everyday development and training within the program-
ming team takes place in a flat structure, where code is reviewed
and bugs resolved by drawing on the individual knowledge of each
developer about particular portions of the code. The somewhat sim-
plistic debugging tools have not limited us so far. The most elusive

bugs were unexpected number types at the foreign function inter-
face which caused type conversion problems in the C API calls.

5. Compilation
The compilation flow diagram is shown in Fig 1 (C). The basic
idea is to build a single static library containing all of the Scheme
payload, and link this library to a small launcher stub in the native
language of the target platform (Objective C on iOS and OS X, Java
on Android etc).

The payload is compiled using the standard automake tool
chain. First the Scheme source files are converted to C using the
Gambit-C gsc compiler. Next, resources such as images and fonts
are processed into Scheme data with custom resource compilation
tools and likewise compiled to C with gsc. Finally, the resulting
intermediate C source files are compiled to object files using the
target platform (cross-)compiler against the SDK provided header
files. The resulting object files are assembled into a single static
payload library.

Compilation of the application binary is complicated by the
platform vendors requirement for specific tools. For example,
iPhone applications must be built with XCode to satisfy the strin-
gent code signing requirements for app store submissions. For this
reason a CMake script is used to automatically generate an XCode
project and xcodebuild is used to link the payload to the appli-
cation stub and generate a valid application binary. Similarly the
unconventional linking done in the Android build chain requires
automating the use of the Android NDK ant based build system.
The framework also automatically handles the manifests and icon
graphics needed for the SDK driven builds on the different plat-
forms.

6. Applications
The following sections describe three representative examples of
the framework applications. Most of the applications are research
tools used for human trials, and have been used to collect clinical
data from more than 10,000 subjects in Canada, France, India,
Uganda, Bangladesh, and South Africa, in more than 10 separate
clinical studies.

Figure 3. (A) Schematic of the VitalNode server accessing a patient monitor network through a passive tap. (B) telePORT application
overview screen showing real time vital signs from a hospitals operating room theatres.

Almost all our application code is functional style Scheme
(R5RS) without macros. The code repository contains 317,829
lines of Scheme, including comments and auto-generated code.
There are 58 modules, 30 plugins and 77 applications. The only
other languages used are C and shell script for supporting tools.

Current applications are deployed on embedded platforms,
medical grade flat panel displays, netbooks, and smartphones run-
ning iOS and Android. The applications have no noticeable perfor-
mance problems with respect to garbage collection, memory leaks,
footprint etc. Our telemonitoring server described below has upti-
mes of over a year running on embedded hardware, and our mobile
applications run on devices with only 128Mb RAM.

Any device used for diagnostic purposes in humans requires
regulatory approval. Health Canada and regional ethics boards have
approved the use of our devices for clinical research. The use of
Scheme did not directly impact the regulatory process, which is
focused on documentation and hazard analysis/mitigation.

7. Use case: The Phone Oximeter
A pulse oximeter is a noninvasive sensor that measures the oxy-
gen concentration of blood. This is a critically important tool for
continuous monitoring of oxygen saturation (SpO2) in the operat-
ing room (OR), and is also a good predictor of disease severity and
treatment response in a wide range of diseases such as pneumonia
in children [7]. The Phone Oximeter is an inexpensive and portable
pulse oximeter that runs on a mobile phone [8], as shown in Fig
2 (A). This device is targeted at users in low and middle income
countries with little or no availability of conventional pulse oxime-
try equipment.

For research, we are designing mobile phone applications to
record and store accurate spot-checks of a patients SpO2 using the
Phone Oximeter. Fig 2 (B) shows the measurement screen of one of
our newest such applications, Pre-Eclampsia Integrated Estimate of
RiSk (PIERS), which is described later in this section. This screen
displays a photoplethysmogram, as well as heart rate (HR) and
SpO2 trends.

PhoneOxR [9] and its sequel PhoneOxR2 are Phone Oxime-
ter applications used to collect accurate SpO2 and HR values for
patients admitted to studies on post discharge mortality, newborn
and early childhood sepsis, and respiratory distress in Uganda,
Bangladesh, and India respectively.

Our first goal with these applications was to ensure the accuracy
of data used within the research studies. Changes in data quality
reflected in a Signal Quality Index (SQI) result in prominent colour
changes on the display. A horizontal progress bar shows the SQI
colour over time, to promote the collection of good data, as seen in
Fig. 2 (B). The percent of the recording that was good quality, as
well as the median HR and SpO2 trend values calculated from only
green (high quality) sections of the recording are displayed at the
end of the recording.

For each study subject, these applications create patient records,
which include the median HR and SpO2 as calculated above. A sur-
vey component allows entry of patient details such as demograph-
ics and medical history for each patient. The data is stored locally
in an encrypted database and whenever network access is avail-
able the data is sent to a secure Research Electronic Data Capture
(REDCap) [10] server via the REDCap application programming
interface.

The PIERS application Fig 2 (B) represents the next step in
our Phone Oximeter applications as it provides an interface for
collecting not just SpO2 but also the details of signs, symptoms,
medical history, and medications taken over multiple visits with a
patient.

This information is the input to a decision tree, which includes
the miniPIERS predictive model, to assess the risk of pre-eclampsia
and provide a recommendation, such as urgent transport to the
hospital. The miniPIERS model is similar to the fullPIERS model
[11], but it excludes the use of laboratory tests so that it can be used
in community and primary health care facilities where these test are
not possible. This application is designed to be used by midwives
in local clinics and a simplified version of the application is being
constructed to be used by community health care workers in their
regular visits to pregnant women’s homes. This application has
undergone multiple iterations of usability testing and the simplified

Figure 4. (A) Schematic of the iControl system for automated drug administration during general intravenous anesthesia. (B) The iControl
interface running on platforms with different screen sizes.

version will be used in a multi-site study in India, Nigeria, Pakistan
and Mozambique in the near future.

8. Use case: The telePORT monitoring and
messaging device

Conventional physiological monitors in multi-bed environments
such as operating rooms (OR) and intensive care units (ICU) are
connected to central monitoring stations. However, these central
stations are immobile and have limited proprietary interfaces. In
order to make better use of collected patient data, we have devel-
oped a data access node and accompanying wireless real-time dis-
play of multi-bed patient data for mobile phones, which operates
independently of the commercial patient monitor network.

We use an intrinsically safe method for extracting physiolog-
ical trends and waveforms from patient monitoring networks by
means of a passive network tap [12]. The tap is inserted into the
central monitor network, Fig. 3 (A), and an exact copy of the net-
work traffic is analyzed in real time with no impact on the net-
work itself. Data collected from the tap is analyzed by a VitalNode
server, developed in the application framework. This server runs on
a Soekris 5501 embedded computer, and uses the PCAP (Packet
CAPture) [13] application programming interface interfaced to a
Scheme based parser plugin. Our parser understands raw network
packages from Philips IntelliVue MP70 and Datex-Ohmeda S/5
monitors and stores continuous waveforms and vital sign trends
from the monitors. This data is then fed through a forward chaining
inference engine decision support plugin in the framework to gen-
erate trend based alerts. This approach allows wireless and wired
access to encrypted physiological data, from all beds of the entire
OR, ICU or ward to which the system is connected, as well as se-
cure message exchange between users of the system.

telePORTs purpose is to improve information exchange, and
simplify communication between anesthesia team members [14].
The telePORT interface is shown in Fig 3 (B). It runs on a mo-
bile phone and polls user- and system generated messages, vital
signs trends, and waveforms securely over the hospitals wifi net-
work from the VitalNode server. It then supports the users work
though five components: A) an overview screen, which provides
the user with basic information about their subscribed monitoring
locations, such as the anesthetic phase and three vital sign values.
If additional detail is required access to waveforms and trends is

provided. B) a messaging screen, which works as a combination
of person-to-person chat system, and a system to receive requests
for help through a button pressed on the patient monitor in an OR,
C) a phonebook screen, which lists frequently used phone exten-
sion and pager numbers; and provides editing capabilities on the
device, D) a room subscription screen, where room monitoring lo-
cations are subscribed to and where subscriptions can be delegated
to other users, and E) a reminder screen, which allow the user to
set up time- and anesthetic phase-based reminders. telePORT has
been used in our department continuously for the last year with
highly favourable reviews by its users. Based on this success, we
are currently in the progress of developing a mobile monitoring, in-
formation exchange, and team communication solution for nurses,
respiratory therapists and physicians in the ICU.

9. Use case: The iControl anesthesia controller
Today, intravenous anesthesia is typically delivered by a manually
adjusted continuous infusion; a syringe pump is programmed to
deliver a fixed volume per unit time, usually calculated on a weight
basis with dosage based on a historical population average. Due to
the high inter-patient variability, it is difficult to predict a manual
infusion rate that will accurately produce the desired target brain
concentration of the drug. Too little drug will mean that the patient
will move or wake up, and too much drug will result in prolonged
recovery and an increase in side effects such as cardiovascular or
respiratory depression.

An automated anesthetic drug delivery system that offers a con-
tinuously adjusted rate of intravenous drug administration has ad-
vantages over traditional static (weight based) infusion, including
greater hemodynamic and respiratory stability, more stable depth
of anesthesia, the ability to predict recovery, and a lower total dose
of drug administered.

iControl is such a closed-loop solution that delivers drugs based
on feedback from electroencephalography (EEG) derived measure-
ments of depth of hypnosis, as shown schematically in Fig 4 (A).
Closed-loop control technology is used extensively in many fields
such as the aviation and nuclear industry, but has yet to make a sig-
nificant impact in anesthesia (or medicine in general). One of the
main reasons for this is the natural concern about safety of closed-
loop systems in medical applications.

The iControl system was designed and implemented using rig-
orous validation requirements of high-risk medical instrumenta-
tion, including a detailed user and system requirements specifica-
tion, hazard analysis, and system design specification. The system
underwent usability studies and extensive manual and automated
system tests prior to being approved for clinical trials by Health
Canada.

iControl is implemented as a client-server system. The server
resides on a Soekris 5501 embedded computer running Linux or
OpenBSD. The server has several sub-processes that use the frame-
work plugin structure to feed data from syringe pumps and patient
monitors to a patient specific data store. A controller plugin in-
stantiated on the patient store calculates the new infusion rates and
instructs the pump plugins to update the devices. The server com-
municates with a client interface through the same encrypted com-
munication scheme as used by the telePORT application.

The iControl client interface is shown in Fig 4 (B). It features a
real time display of current infusion rates, estimated brain concen-
trations of the delivered drugs, measured depth of hypnosis, and
target depth of hypnosis.

The system is controlled through a simple touch screen based
input system that is designed to provide a consistent and safe in-
terface. The user interface screen layout automatically reconfigures
based on the size of the display. The primary system console client
runs on a medical grade flat panel PC (Windows XP embedded),
mounted on a mobile medical cart together with pumps, EEG mon-
itor and the embedded controller. Remote monitoring is possible
over wifi by running the iControl interface application on a mobile
phone or tablet. Multiple clients can run against the server simulta-
neously.

iControl has successfully been used to automate hypnotic drug
(propofol) delivery in adults [15] and children [16, 17] , and is
currently used in a study on adults controlling both hypnotic and
analgesic drug (remifentanil) delivery concurrently.

10. Conclusions
A modular framework for cross-platform development of robust
medical applications has been developed and used for deployment
of diverse applications ranging from mission-critical embedded
drug delivery systems to diagnostic and monitoring apps on iPhone
and Android smart phones.

The use of Scheme and the extensive reuse of code between
applications have enabled efficient development cycles with mini-
mal resource requirements and a very small code base. The ability
to deploy applications on a wide range of different platforms has
proven to provide great flexibility and offers a way to easily port
the system to new platforms if the need arises. The possibility of
developing on a platform other than the target platform also pro-
vides greater productivity as it allows developers to work with the
platform and development tools they prefer.

The biggest challenge encountered has been the learning curve
associated with the Scheme language, and the lack of knowledge
of functional programming in the engineering and the medical
community from which we normally recruit. Unfamiliar syntax
appears to be the biggest barrier. Use of a more familiar C or
Java like in-fix notation, for example as provided by the Gambit-
C internal ”six” notation, may overcome this problem, and provide
a robust cross-platform development system that can benefit from
the strength of functional programming while being disseminated
to the programming community at large.

A. Source code
The source code for the core framework, including simple demon-
strator applications, is open source and available for download at:
https://github.com/part-cw/lambdanative.

References
[1] Gambit Scheme programming language,

http://gambitscheme.org

[2] Feeley M, Miller JS, Guillermo JR, Wilson JA. Compiling higher-order
languages into fully tail-recursive portable C. Technical Report 1078,
département d’informatique et r.o., Université de Montréal (1997)

[3] IEEE Standard for the Scheme Programming Language, IEEE 1178-
1990, ISBN: 1559371250

[4] The Revised6 Report on the Algorithmic Language Scheme,
http://www.r6rs.org

[5] Kilgard MJ, Akeley K. Modern OpenGL: its design and evolution.
SIGGRAPH Asia ’08, p. 13 (2008)

[6] Johnson S. Lint, a C program checker. Computer Science Technical
Report 65, Bell Laboratories, December 1977

[7] Neuman MI, Monuteaux MC, Scully KJ, Bachur RG. Prediction of
Pneumonia in a Pediatric Emergency Department. Pediatrics, 2011;
128:2 p. 246-53

[8] Karlen W, Hudson J, Lim J, Petersen C, Anand R, Dumont GA,
Ansermino JM. The Phone Oximeter. IEEE Engineering in Medicine
and Biology Society Unconference, Boston, USA, August 30, 2011

[9] Dunsmuir D, Petersen C, Karlen W, Lim J, Dumont GA, Ansermino
JM. The Phone Oximeter for Mobile Spot-Check. Society for Technol-
ogy in Anesthesia 2012 Annual Meeting, Palm Beach, FL, USA, January
18-21, 2012

[10] Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde
JG. Research electronic data capture (REDCap) - A metadata-driven
methodology and workflow process for providing translational research
informatics support. J Biomed Inform. 2009, 42(2), p. 377-81

[11] von Dadelszen P, Payne B, Li J, Ansermino JM, Broughton-Pipkin F,
Cote AM, Douglas JM, Gruslin A, Hutcheon JA, Joseph KS, Kyle PM,
Lee T, Loughna P, Menzies JM, Merialdi M, Millman AL, Moore MP,
Moutquin JM, Ouellet AB, Smith GN, Walker JJ, Walley KR, Walters
BN, Widmer M, Lee SK, Russell JA, Magee LA. Predicting adverse
maternal outcomes in pre-eclampsia: the fullPIERS (Pre-eclampsia
Integrated Estimate of RiSk) model - development and validation.
Lancet, 2011, 377 (9761), p. 219-227

[12] Görges M, Petersen C, Ansermino JM, Capturing vital signs for
research in a multi-bed monitoring environment. Anesth Analg, 2011,
113 (2S Suppl), p. 42

[13] McCanne S, Jacobson V. The BSD Packet Filter: A New Architecture
for User-level Packet Capture. Proc. of the USENIX Winter 1993
Conference p. 2

[14] Görges M, Ansermino JM. Development of a Mobile Monitoring
and Communications Solution for Anesthesia Team Members. Anesth
Analg, 2011, 112 (5S Suppl), p. S207

[15] Dumont G, Liu N, Petersen C, Chazot T, Fischler M. Closed-
Loop Administration of Propofol Guided by the NeuroSense: Clinical
Evaluation Using Robust Proportional-Integral-Derivative Design.
American Society of Anesthesiologists (ASA) Annual Meeting 2011

[16] van Heusden K, Dumont GA, Soltesz K, Petersen C, West N,
Ansermino JM. Clinical evaluation of closed-loop controlled propofol
infusion in children. World Congress of Anesthesiologists, Buenos Aries,
Argentina, March 25-30, 2012

[17] West N, Dumont GA, van Heusden K, Khosravi S, Petersen C,
Ansermino JM. The administration of closed-loop control of anesthesia
for gastrointestinal endoscopic investigations in children. Society for
Pediatric Anesthesia AAP Pediatric Anesthesiology Annual Meeting,
Tampa, FL, USA, February 23-26, 2012

